算法、AI深度学习和大数据的发展,使得人类在肆虐的病毒面前不会无动于衷。
1月24日,北京大学工学院教授朱怀球团队在bioRxiv预印版平台发表《深度学习算法预测新型冠状病毒的宿主和感染性》一文中指出,蝙蝠和水貂可能是新型冠状病毒的两个潜在宿主,水貂可能是中间宿主。
▲论文截图
据朱怀球团队的研究表明,新型冠状病毒与云南菊头蝠中存在的RaTG13冠状病毒一致性高达96%;另外,基于深度学习开发的VHP(病毒宿主预测)方法预测的结构化显示,水貂的病毒的传染性模式更接近新型冠状病毒。
据悉,在此次研究中,该团队使用了基于深度学习模型的AI技术寻找病毒宿主。这可能是国内首次在2019新型冠状病毒的研究中使用深度学习AI取得成果。
AI加入抗击疫情一线,深度学习寻找病毒宿主
一种前所未知的新型病毒出现后,确定病毒宿主是十分重要的。由于病毒复杂的多样性,目前人类已知的病毒和对病毒本身的了解还远远不够,大多数以人类为宿主的病毒,通常对人类造成生命安全威胁之后,才会进一步引起人们的重视。
对一些本不以人类为宿主的病毒来说,其本身也可能突发变异,或者通过中间宿主也可感染至人类。因此,快速寻找鉴别未知病毒的宿主,能够帮助人类了解病毒与宿主间的相互作用,以应对突发变异等潜在威胁,从而有针对性的对病毒进行预防和控制,具有重要意义。
▲图片来源:新京报网
为了检测新病毒的潜在宿主和致病性,传统的方法是基于通过建立病毒基因库,将新型病毒的DNA序列与已知病毒的基因序列做对比检索,通过比较病毒DNA局部的相似性,从而做出对新病毒宿主的模糊预测。
北京大学朱怀球团队在对2019新型冠状病毒的宿主研究和预测中,通过构建VHP算法模型,将已经提取的新型冠状病毒的基因组,与已有病毒基因数据库做数据检索和对比。在算力的支持下,通过深度学习模型对病毒基因数据的广域检索,实现新型冠状病毒自然宿主的寻找和预测。
VHP模型计算出新型冠状病毒的感染性
朱怀球团队在bioRxiv预印版平台发表的论文中称:“为了构建VHP模型,我们使用了一个双路卷积神经网络用于预测病毒序列宿主;我们把病毒的宿主分为五种类型,包括植物、细菌、无脊椎动物、脊椎动物和人类;输入病毒核苷酸序列,基于深度学习的VHP模型,将为每种宿主类型分别输出5类结果,分别反映出新型冠状病毒在每种类型中感染性。”
通过对VHP模型计算的结果分析,筛选的病毒宿主包括犬、猪、貂、龟和猫。研究人员经过分析比较后认为水貂的病毒的传染性模式更接近新型冠状病毒。
|